数学学科学术报告(Wensong Lin Nanjing )

发布者:段玉玲   发布时间:2018-05-15  浏览次数:14

报告题目On t-relaxed 2-distant coloring of a graph

报 告 人:Wensong Lin,School of Mathematics, Southeast University, Nanjing 210096, P.R. China

报告时间:5月19日上午9:30-10:30

报告地点:数理信息学院21幢427

Abstract
Let G be a simple graph. Suppose f is a mapping from V (G) to nonnegative integers.
If, for any two adjacent vertices u and v of G, |f(u) − f(v)| ≥ 2, then f is called a 2-distant
coloring of G. In this paper, we introduce a relaxation of 2-distant coloring of a graph. Let
t be a nonnegative integer. Suppose f is a mapping from V (G) to nonnegative integers. If
adjacent vertices receive different integers and for each vertex u of G, the number of neigh-
bors v of u with |f(v)−f(u)| = 1 is at most t, then f is called a t-relaxed 2-distant coloring
of G. If t = 0 then f is just a 2-distant coloring of G. The span of f, denote by sp(f),
is the difference between the maximum and minimum integers used by f. The minimum
span of a t-relaxed 2-distant coloring of G, is called t-relaxed 2-distant coloring span of G,
denoted by sp t
2 (G). This paper investigates the complexity of the t-relaxed 2-distant col-
oring problem as well as some properties of this parameter on planar and outerplanar graphs.t-relaxed 2-distant coloring.K
eywords: channel assignment problem, coloring, t-relaxed coloring, 2-distant coloring.

林文松,教授,博士生导师。1968年生。19861993年就读于山东大学数学系运筹学专业,获理学学士学位和理学硕士学位。20012004年就读于香港浸会大学数学系,获博士学位。1993年至今在东南大学数学系任教。长期从事运筹学方面的教学和科研工作。先后主讲的本科生和研究生的课程有:图论及其应用、组合最优化、最优化理论与方法,离散数学、组合数学、运筹学、代数图论、随机图、现代图论等。主要研究方向:图论及其应用、组合最优化等。先后主持完成国家自然科学基金面上项目2项,主持江苏省自然科学基金面上项目1项。已在J. of Graph TheoryJ. of Combin. Theory Ser. B. European J. Combin. Discrete Appl. Math.Discrete Math. J. of Combin. Optim.Inf. Proc. Lett.Tanwanese J. of Math.Inter. J. of Computer Math. Ars Combin.等刊物发表论文五十余篇。

 

联系电话:0579-82298188(学院办) 0579-82298900(教务办) 0579-82298887(学工办)
浙江师范大学数理与信息工程学院 地址:浙江省金华市迎宾大道688号 邮编:321004 管理登陆
Copyright?2011 mpi.zjnu.net.cn All rights Reserved