数学学科学术报告(东瑜昕 嵇庆春 复旦大学)

发布者:段玉玲   发布时间:2018-11-09  浏览次数:70

报告题目:On Eells-Sampson type theorems for subelliptic harmonic maps

报告人:东瑜昕(复旦大学)

报告时间:2018年11月17日周六下午14:00-15:00

报告地点:21-427

摘要:A sub-Riemannian manifolds is a manifold with a subbundle of the tangent bundle and a fiber metric on this subbundle. A Riemannian extensions of a sub-Riemannian manifold is a Riemannian metric on the manifold compatible with the fiber metric on the subbundle. One may define an analog of the Dirichlet energy by replacing the L2 norm of the derivative of a map between two manifolds with the L2 norm of the restriction of the derivative to the subbundle when the domain is a sub-Riemannian manifold. A critical map for this energy is called subelliptic harmonic map.
In this talk, by use of a subelliptic heat flow, we establish some Eells-Sampson type existence results for subelliptic harmonic maps when the target Riemannian manifold has non-positive sectional curvature.

 

 

报告题目:On the Second Main Theorem of Nevanlinna Theory for Singular Divisors

报告人:嵇庆春(复旦大学)

报告时间:2018年11月17日周六下午15:10-16:10

报告地点:21-427

摘要:We will talk about the index condition on divisors by using germ decompositions and a new ramification current as the curvature current of a singular metric. Then we prove a Second Main Theorem type result of Nevanlinna theory for divisors satisfying our (k,l)-condition with an extra Characteristic Function term of a meromorphic map denoted by Jacobian minors.

 


 

 

联系电话:0579-82298188(学院办) 0579-82298900(教务办) 0579-82298887(学工办)
浙江师范大学数理与信息工程学院 地址:浙江省金华市迎宾大道688号 邮编:321004 管理登陆
Copyright?2011 mpi.zjnu.net.cn All rights Reserved