数学学科学术报告(陈和柏 福州大学)

发布者:段玉玲   发布时间:2018-12-06  浏览次数:38

福州大学 陈和柏 系列报告 (针对研究生和青年教师)

报告1: 分段线性系统的极限环研究:最近进展和几个值得考虑的问题

128号上午10:00-11:00,21-417

  

报告2: 分段线性系统的极限环研究:基础理论

129号上午10:00-11:00,21-417

个人简介

陈和柏,福州大学“旗山学者”特聘教授。现从事微分方程与动力系统的教学和研究。于20106月与20136月分别获得四川大学数学基地班专业学士学位与基础数学硕士学位;于20176月获得西南交通大学一般力学与力学基础专业博士学位。在科研上,应邀赴英国帝国理工学院和诺丁汉大学等国内外大学进行学术访问。主要从事关于光滑及非光滑微分方程的定性理论与分岔理论的研究。

博士学位论文获得了西南交通大学优秀博士学位论文培育项目资助,并被评为西南交通大学优秀博士学位论文。近年来,在美国《J. Differential Equations》、《Physica D》、《J. Math. Anal. Appl.》和英国《Nonlinearity》《J. Phys. A: Math. Theo.》等国际重要学术期刊上发表一作SCI学术论文二十多篇,主持国家基金一项。

部分发表SCI收录论文

[1]H. Chen, X. Chen, Dynamical analysis of a cubic Linard system with global parameters, Nonlinearity, 28 (2015): 3535-3562.

[2]H. Chen, X. Chen, Dynamical analysis of a cubic Linard system with global parameters: (II), Nonlinearity, 29 (2016): 1798–1826.

  

[3]H. Chen, J. Xie, The number of limit cycles of the FitzHugh nerve system, Quart. Appl. Math., 73 (2015): 365-378.

  

[4]H. Chen,X. Li, Global phase portraits of memristor oscillators,Internat. J. Bifur. Chaos 24(2014): 1450152.

  

[5]H. Chen,Global analysisonthe discontinuous limit case of a smooth oscillator,Internat. J. Bifur. Chaos 26 (2016) 1650061.

  

[6]H. Chen,Global bifurcation for a class of Filippov system with symmetry, Qual. Theory Dyn. Syst.15 (2016):349-365.

  

[7]H. Chen, J. Xie, Harmonic and subharmonic solutions of the SD oscillator, Nonlinear Dyn.84 (2016):2477-2486.

  

[8]H. Chen, L. Zou, Global study of Rayleigh-Duffing oscillators, Journal of Physics A: Mathematical and Theoretical49 (2016):165202.

[9]D. Li, H. Chen, J. Xie, Statistical properties of the universal limit map of grazing bifurcations, Journal of Physics A: Mathematical and Theoretical49 (2016):355102.

[10] H. Chen,Global dynamics of memristor oscillators,Internat. J. Bifur. Chaos 26 (2016) 1650198.

  

[11] H. Chen, X. Chen, A proof of Wang–Kooij’s conjectures for a cubic Liénard system with a cusp, Journal of Mathematical Analysis and Applications445 (2017):884-897.

  

[12]H. Chen, X. Chen, J. Xie, Global phase portraits of a degenerate Bogdanov-Takens system with symmetry, Discrete and Continuous Dynamical Systems-Series B, 22 (2017): 1273-1293.

  

[13] H.Chen, D. Li, J. Xie, Y. Yue, Limit cycles in planar continuous piecewise linear systems, Communications in Nonlinear Science and Numerical Simulation, 47 (2017):438-454.

  

[14] H.Chen, Z. Cao,D. Li, J. Xie, Global analysis on a discontinuous dynamical system, International Journal of Bifurcation and Chaos, 27 (2017):1750078.

  

[15] D. Li, H. Chen, J. Xie, J. Zhang, Sinai-Ruelle-Bowen measure for normal form map of grazing bifurcation of impact oscillators, Journal of Physics A: Mathematical and Theoretical,50 (2017):385103.

  

[16] H. Chen, J. Llibre, Y. Tang, Global study of SD oscillator, Nonlinear Dynamics, 91(2018):1755-1777.

[17] H. Chen, X. Chen, Global phase portraits of a degenerate Bogdanov-Takens system with symmetry: (II), Discrete and Continuous Dynamical Systems-Series B, 23(2018):4141-4170.

[18] H. Chen, D. Huang, Y. Jian, The saddle case of Rayleigh-Duffing oscillators, Nonlinear Dynamics,93(2018):2283-2300.

[19] H. Chen, S. Duan, Y. Tang, J. Xie, Global dynamics of a mechanical system with fry friction, Journal of Differential Equations, 265(2018):5490-5519.

[20] H. Chen, J. Duan, Bounded and unbounded solutions of a discontinuous oscillator at resonance, International Journal of Non-Linear Mechanics, 105(2018):146-151.

[21] H. Chen, L. Zou, How to control the immigration of infectious individuals for a region?Nonlinear Analysis Series B: Real World Applications,45(2019):491-505.

[22] H. Chen, Y. Tang, At most two limit cycles in a piecewise linear differential system with three zones and asymmetry, Physica D, to appear.

[23] H. Chen, M. Han, Y. Xia, Limit cycles of a Lienard system with symmetry allowing for discontinuity, Journal of Mathematical Analysis and Applications, 468 (2018):799-816.

[24] D. Li, H. Chen, J. Xie, Smale horseshoe in a piecewise smooth map, International Journal of Bifurcation and Chaos, to appear.

[25] H. Chen, Y. Tang, A proof of Arts-Llibre-Valls's conjectures for the Higgins-Selkov and Selkov systemsJournal of Differential Equations, to appear.

 

 

联系电话:0579-82298188(学院办) 0579-82298900(教务办) 0579-82298887(学工办)
浙江师范大学数理与信息工程学院 地址:浙江省金华市迎宾大道688号 邮编:321004 管理登陆
Copyright?2011 mpi.zjnu.net.cn All rights Reserved